JFE シビル(株) 正会員 〇田子 彰大, 榊原 淳一 JOGMEC 高梨 将

佐藤工業(株) 正会員 永尾 浩一

1. はじめに

石油の増産や炭酸ガスの地層貯留を目的として地下にガスなどの流 体を圧入する際,圧入計画の作成,圧入量などの管理において圧入した 流体の挙動を把握することは重要である.しかし,圧入された流体は地 層構造の影響を受けて移動するため,実際の挙動が事前の予測と一致し ないことも多く,この圧入流体のモニタリング技術の開発が必要とされ ている.弾性波探査や電気探査などの物理探査技術は,広い範囲を非破 壊で可視化できるため,このモニタリングに適していると考えられるが, 圧入流体が弾性波速度や電気比抵抗値に与える影響が小さい場合のモ ニタリングは難しいとされてきた.

榊原、山本(2009)が開発した音響トモグラフィ地盤探査手法¹⁾は、 弾性波探査の一つに分類されるが、他の一般的な手法に比べて計 測精度と計測再現性が高いこと、また、弾性波速度と比較してよ り鋭敏に地盤の状態変化に反応する振幅の変化を正確に可視化 ²⁾できることに特徴がある。今回、この圧入流体のモニタリング に対する本手法の適用性を検証するため、岩石試験体を用いた基 礎的な実験を実施した。実験結果から、本手法により得られた振 幅減衰分布図は岩盤内部に圧入された流体の挙動を反映してお り、本手法が圧入流体のモニタリングに適用可能であることがわ かった。

2. 実験概要

(1)音響トモグラフィ地盤探査法とは

本手法は非破壊の可視化技術という点において医療技術の CT スキャンと類似の技術である.振幅と周波数を正確に制御 した高周波数の弾性波を用いること,疑似ランダム波と呼ばれ る連続波を発振すること,弾性波速度だけでなく振幅の減衰量 を結果として出力できることに特徴がある.図-1 に本手法の 概要を示すが,圧電素子型発振器から発振し,多連の圧電素子 型受信器で受信した信号をデータロガーに記録する.記録され た受信波形をもとに初動波の到達時間と受信振幅を読取り,計 測断面の伝播速度と振幅減衰率分布図を逆計算手法により求 める.なお,振幅減衰率は式(1)により求める.ここでαは振

幅減衰率, A₀は発振振幅, Aは受信振幅, dは伝播距離を示す.

図-2 実験に用いた試験体

表-1 主な使用機器

名称	仕様
発振器	圧電素子型,Benthos社製,外径約15mm,
	長さ 約 20mm, 使用可能周波数帯域, 10Hz
	~150kHz(実績).
受信器	圧電素子型、フジセラミックス製、外径
	約 10mm, 最小センサー間隔 10mm, 使用可
	能周波数帯域 10kHz~200kHz(実績).
増幅器	出力電圧 50V(150kHz 時),使用可能帯域
	1Hz~200kHz, 電源 AC100V, 消費電力 30W.
信号フィ	ゲイン 1 倍~100 倍,使用可能周波数帯
ルター	域 5kHz~200kHz, 電源 DC+12V.
データロ	入力4ch,出力1ch,AD変換速度1MHz/ch,
ガー	DA 変換速度 2MHz,入力分解能 14bit.
$\alpha = \frac{\mathbf{A}}{\mathbf{d}} \qquad (\vec{\mathbf{x}} 1)$	

$$\alpha = \frac{1}{A_0} d \qquad (I \subset I)$$

キーワード 地下流体,モニタリング,弾性波,振幅減衰,可視化

連絡先 〒111-0051 東京都台東区蔵前 2-17-4 JFE シビル(株) TEL 03-3864-3793

(2)実験装置

実験装置を図-2 に示す.低浸透性の地層に挟まれた高浸透性の地層に流体を圧入することを想定し,2 個の低浸透性の凝灰岩(透水係数 1.1*10⁻⁸cm/s)で高浸透性の耐火煉瓦(透水係数 1*10⁻²cm/s 以上)を挟み,注入孔を用いて耐火煉瓦内部に流体を注入した.これらの岩石試験体は,事前に真空装置を用いて完全に飽和させてあり,実験は試験体を水槽内に設置して行った. 圧入流体には拡散能力の高いマイクロバブル水³⁾を用いた.

耐火煉瓦には直径 20mmの計測孔を 2本削孔してあり,発振器と受信器をそ

写真-1 実験状況

れぞれ設置した.計測は注入前,注入7 分後,16分後,27分後の4回行い,逆 計算により速度と振幅減衰率分布図を 出力した.発振周波数は78kHz,センサ ーへの印加電圧は50Vであった.実験に 用いた主な使用機器と実験状況を表-1, 写真-1に示す.

3. 実験結果

実験結果として減衰率分布図と速度 分布図の時系列変化を図-3,図-4に示す. 図-3の減衰率分布図からは,注入7分後 には高減衰率部か注入孔の左側に広が り始め,注入後16分,27分と進むにつ れ高減衰率部が大きく広がっているこ とが分かる.現場での目視観察結果から, 注入7分後には図中左側の上面や側面か ら気泡が漏れ始め,注入27分後には右 側から漏れていたことが確認されてお り,このことは図-3の結果と一致する. 一方,図-4の速度分布図からは,注入の 前後で明瞭な速度変化を確認できなかった.

図-4 速度分布図の変化

4. まとめ

地盤に圧入した流体のモニタリングに対する音響トモグラフィ法の適用性を検証するために岩石試験体に マイクロバブル水を注入して検証実験を行った.この結果から音響トモグラフィ法で得られる減衰率分布図は この圧入流体の挙動を反映していること,一方,速度分布図は圧入流体の影響をほとんど受けていないことが わかった.

参考文献

- 1) 榊原淳一,山本督夫(2009):高周波数の弾性波を用いた高精度地盤調査手法の開発,土木学会論文集 C, Vol. 65, No. 1, 97-106.
- 2) 榊原淳一,毛利栄征,山本督夫:高周波数の弾性波の速度と減衰率を用いた模型土槽内部の可視化手法の 開発,土木学会論文集 C Vol. 67, No. 3, 310-318, (2011).
- 3) 永尾浩一,前田幸男,末政直晃:マイクロバブル水混入工法による地盤の液状化対策工に関する検討実験, 佐藤工業技術研究所報,No. 32, pp21-25, 2007.